2011年全国高等学校招生统一考试四川卷(理数)1.选择题必须使用2B铅笔将答案标号填涂在答题卡上对应题目标号的位置上2.本部分共12小题,每小题5分,共60分.一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)11[31.5,35.5)12[35.5.39.5)7[39.5,43.5)3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是®)3262)2.复数-i+-=(A)-2i(B)(C)0(D)2i3.1,12,是空间三条不同的直线,则下列命题正确的是(A)4⊥4,12⊥3→11(B)4⊥,12I4→4⊥1(C)121414=41,4,4共面(D)1,12,1共点→1,42,1共面4如图,正六边形ABCDEF中,BA+CD+EF=(A)0 (B)BE (C)AD (D)CF5函数,f(x)在点x=x,处有定义是f(x)在点x=x处连续的(A)充分而不必要的条件(B)必要而不充分的条件(C)充要条件(D)既不充分也不必要的条件第1页|共10页6.在△ABC中.sin2≤sin2B+sin2C-sin BsinC.则A的取值范围是(A)(0,7.已知f(x)是R上的奇函数,且当x>0时,f(x)=(兮)广+1,则f(x)的反函数的图像大致是2(B)(C)(D)8.数列{an}的首项为3,{b}为等差数列且bn=a-an(n∈N).若则b=-2,bo=12,则a=(A)0(B)3.(C)8(D)119.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车某天需运往A地至少72吨的货物,派用的每辆车虚满载且只运送一次,拍用的每吨甲型卡车虚配2名工人,运送一次可得利润450元:派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元该公司合理计划党团派用两类卡车的车辆数,可得最大利润(A)4650元(B)4700元(C)4900元(D)5000元10.在抛物线y=x2=ar-5(a≠0)上取横坐标为x=-4,x、=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为(A)(-2,-9)(B)(0,-5)(C)(2,-9)(D)(1,-6)11.已知定义在[0,+o)上的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=-x2+2x.设f(x)在[2n-2,2n)上的最大值为an(n∈N,且{an}的前n项和为Sn,则lim S.=0(A)3(B)(C)2(D)3-212.在集合1,2,3,4,5}中任取一个偶数a和一个奇数b构成以原点为起点的向量a=(a,b)第2页|共10页从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形记所有作成的平行四边形的个数为n,其中面积不超过4的平行四边形的个数为,m,则”=2(A)(B)(C)(D)1553注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚答在试题卷上无效2.本部分共10小题,共90分二、填空题:本大题共4小题,每小题4分,共16分13.计算0g4lg25)*100=14.双曲线-上=1上一点P到双曲线右焦点的距离是4,那么点P到左准线的距离6436是15.如图,半径为R的球0中有一内接圆柱.当圆柱的侧面积最大是,求的表面积与改圆柱的侧面积之差是16.函数f(x)的定义域为A,若X1,x2∈A且f(x)=f(x2)时总有X,=X2'则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:①函数f(x)=x2(x∈R)是单函数:②若f(x)为单函数,X1,X2∈A且x1≠X2,则f(x)≠f(x2):③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象:④函数f(x)在某区间上具有单调性,则f(x)一定是单函数,其中的真命题是(写出所有真命题的编号)三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤。17.已知函数f)=sinx+7巧+cos(x-3巧,xeR44(1)求函数的最小正周期和最小值:②已知cosB-四)=5cos(B+四)=-行,0